If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2p^2-10=152
We move all terms to the left:
2p^2-10-(152)=0
We add all the numbers together, and all the variables
2p^2-162=0
a = 2; b = 0; c = -162;
Δ = b2-4ac
Δ = 02-4·2·(-162)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36}{2*2}=\frac{-36}{4} =-9 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36}{2*2}=\frac{36}{4} =9 $
| -9-5x-3x=39 | | 2x+6=24(x=9) | | 4-3x=x+0 | | -3x+9=0+6x | | 2p-1=5(p-1)-2(2-2p) | | 2z–5=27 | | 5-x=x-15 | | x-20=70(x=100) | | x+24+2x+36=90 | | 3x-3=-5x-19 | | 6=24-3m | | 4m+7=7m+4 | | -16+4y=68 | | 1.4h=1.8h+4.8–0.4h | | 1/5x+20=10 | | -0.4m-0.7=0.22 | | 2=c+-14 | | -16+5y=78 | | 21+3x=-3 | | -16-5y=78 | | p+-11p+2p=8 | | a+5/6=11 | | 12(10x+20)=9x-2(7x-6)-2 | | 4(4)-5y=3 | | 11p-5p-3p-3p+p=12 | | 16-5y=3 | | 5(x+3)-1=9 | | j+56=-77 | | 2x+50=x+25 | | 9sX4=44 | | |7x-28|=21 | | 4=4x/8 |